HTHA Detection

Application Solution

July 2019

© Zetec Inc. All rights reserved
Overview

• Inspection Challenge

• Recommended Solution & Results

• Probe Innovation

• Benefits of Zetec Solution
High Temperature Hydrogen Attack (HTHA) occurs in steels operating at high temperature, above 205°C (400°F) in hydrogen environments, in refinery, petrochemical and chemical facilities.

HTHA is the result of hydrogen dissociating and dissolving in the steel, and then reacting with carbides to form methane, which accumulates at grain boundaries, and eventually leads to the fissures and cracking.

Early stages of HTHA are very difficult to detect, because of the small size of the methane voids, typically < 0.1 mm (0.004”), i.e. much smaller than the applied ultrasonic wavelength.
Consequences of HTHA Damage

HTHA in heat exchanger caused catastrophic fire at Tesoro Anacortes refinery (WA, USA) in April 2010
Recommended Solution

• Efficient and robust inspection strategy, combining multiple ultrasonic examination techniques

• “Damage specific” operator training on specimens with confirmed HTHA (e.g. Lavender International)

• Carefully selected UT and phased array probes

• **TOPAZ64** portable PA UT unit, with all tools and features to efficiently set up and deploy all recommended examination techniques: TOFD, TULA, beamforming phased array UT and live TFM
Examination Technique - TOFD

- TOFD, using high-quality UT probes, is a rapid and robust technique for initial screening of base material and welded regions (HAZ)
- Probe size and frequency depend on material type and wall thickness
- Increased grain noise (short indications) and clustering (beehive) in A-Scan signals are indicative for early stage HTHA
Examination Technique - TULA

- TULA (TOFD Ultra Low Angle), conventional T/R UT probes at 10 MHz, are well suited for initial screening of thicker base material
- As for TOFD, increased back-scattering and clustering in A-Scan signals are indicative for HTHA
Examination Technique – PA UT

- Standard PA UT, with 10 MHz LW DLA probe, used for secondary inspection
- Carefully selected focusing, using 32 or 64 active elements, is key to detect clusters of small methane voids and micro-fissures
Examination Technique – TFM

- TFM, with 10 MHz LW DLA probe, used for secondary inspection
- Confirmation and assessment of HTHA damage, using strong “total focusing” capability

Courtesy of Lavender International
Examination Technique – TFM

- TFM (frame 512 x 512), with large 10 MHz probe, in direct contact for secondary inspection of thick flange specimen, $T = 90$ mm (3.5”)
- Confirmation and characterization of HTHA damage with strong “total focusing” capability (virtual beam shown)
• Integrated DLA probe, NDT Paintbrush compatible
• 2 x 64 elements, small pitch for improved TFM imaging
• DLA “Autofocusing” for improved resolution in passive plane, with beamforming PA UT as well as TFM
AL-TFM 5 MHz Probe (Pulse-Echo)

- AL-type housing, using standard AL-55SW wedge
- 64 elements, small pitch for improved TFM imaging in HAZ under weld cap
- Curved active element for improved resolution in passive plane
- Fully integrated, portable PA UT unit
- Excellent **64 active element PA UT**
- 2 high-SNR TOFD channels at 200 V
- **12” Hi-Res multi-touch** display
- Best-in class « live » TFM
- Parallel recording of PA UT & TFM
- **Bipolar pulse (150Vpp)** option
- Driven by **UltraVision Touch**

Successfully used for Lavender HTHA Certification !
Benefits of Zetec Solution

• Complete offering of high-quality standard and application specific PA UT probes required for efficient detection and characterization of HTHA damage

• **TOPAZ** \(^{64}\) portable PA UT unit, includes all required tools and features to efficiently set up and deploy all recommended examination techniques: TOFD, TULA, phased array UT and live TFM